# Difference between revisions of "Line search methods"

Line 3: | Line 3: | ||

=Introduction= | =Introduction= | ||

− | An algorithm is a line search method if it seeks the minimum of a defined nonlinear function by selecting a reasonable direction vector that, when computed iteratively with a reasonable step size, will provide a function value closer to the absolute minimum of the function. Varying these will change the "tightness" of the optimization. For example, given the function <math>f(x)</math>, an initial <math>x_k</math> is chosen, and the value of <math>f( x_k )</math> is calculated. To find a lower value of <math>f(x)</math>, the value of <math> | + | An algorithm is a line search method if it seeks the minimum of a defined nonlinear function by selecting a reasonable direction vector that, when computed iteratively with a reasonable step size, will provide a function value closer to the absolute minimum of the function. Varying these will change the "tightness" of the optimization. For example, given the function <math>f(x)</math>, an initial <math>x_k</math> is chosen, and the value of <math>f(x_k)</math> is calculated. To find a lower value of <math>f(x)</math>, the value of <math>x_{k+1}</math> is increased |

## Revision as of 08:48, 24 May 2015

Author names: Elizabeth Conger

Steward: Dajun Yue and Fengqi You

## Contents |

# Introduction

An algorithm is a line search method if it seeks the minimum of a defined nonlinear function by selecting a reasonable direction vector that, when computed iteratively with a reasonable step size, will provide a function value closer to the absolute minimum of the function. Varying these will change the "tightness" of the optimization. For example, given the function , an initial is chosen, and the value of is calculated. To find a lower value of , the value of is increased

# Step Length

# Step Direction

jadklfjlasjfkladsl**kfdsklf**
dfadjfkhdakjfhadskj
fahdfkjadshf*kahdfjsdk* [1]
Youtube Site

## Steepest Descent Method

## Newton Method

## Quasi-Newton Method

# Conclusion

# References

1. Sun, W. & Yuan, Y-X. (2006) Optimization Theory and Methods: Nonlinear Programming (Springer US) p 688.

2. Anonymous (2014) Line Search. (Wikipedia). http://en.wikipedia.org/wiki/Line_search.

3. Nocedal, J. & Wright, S. (2006) Numerical Optimization (Springer-Verlag New York, New York) 2 Ed p 664.